where

$$m = 4\pi/\alpha \tag{A.8}$$

If $\rm N_{s}$ is the number of segments then m = $\rm 2N_{s}.$

The shear force $\tau_{r\theta}$ must balance the pin force P shown in Figures 32 and 33. From Figure 32, it is seen for equilibrium of P, that it is required

t
$$\int_{\alpha/4}^{\alpha/2} \tau_{r\theta} \cos (\theta - \frac{\alpha}{4}) r_2 d\theta = P/2$$

where t is the segment thickness. Substitution of (A.7c) into this integral and integration gives

$$\tau = \frac{(m^2 - 1) P}{2mtr_2 (1 + \cos \pi/m)}$$
(A. 9)

where P must be in equilibrium with p_1 as shown in Figure 33, i.e.,

$$\mathbf{P} = \mathbf{p}_1 \mathbf{r}_1 \mathbf{t} \quad . \tag{A.10}$$

A- 53122

FIGURE 33. LOADING OF PINS

;)

For radial equilibrium of the loadings shown in Figure 32, p_2 can be found by integration, i.e.,

$$2\int_{0}^{\alpha/2} \left[\tau_{r\theta}\sin\theta - \sigma_{r}\cos\theta\right] r_{2}d\theta \Big|_{r_{2}} = 2p_{1}r_{1}\sin\frac{\alpha}{2}$$

Substitution for $\tau_{r\theta}$ and σ_r from (A. 7b, c) and integration gives

$$P_2 = \frac{1}{(m^2 - 2)} \left[(m^2 - 1) \frac{P_1}{k_2} - m\tau \right] .$$
 (A. 11)

The stresses in a pin segment are found by superposition of three solutions: the Lamé solution for constant pressures p_1 and p_2 at the r_1 and r_2 respectively, a sinusoidal solution for the variable σ_r loading $-p_2 \cos m\theta$ at r_2 , and a bending solution to remove the hoop stress of the first two solutions from the sides of the segments. The Lamé solution is given by Equations (16a-c) and (17a, b) in the text. The sinusoidal solution, taken from the cos m θ part of Equation (81) in Timoshenko and Goodier⁽¹⁹⁾, is

$$\sigma_{r} = \left[m (1 - m) a_{m} \rho^{m-2} + (2 - m) (1 + m) b_{m} \rho^{m} - m (m + 1) c_{m} \rho^{m-2} + (2 + m) (1 - m) d_{m} \rho^{-m} \right] \cos m\theta$$

$$\sigma_{\theta} = \left[m (m - 1) a_{m} \rho^{m-2} + (m + 2) (m + 1) b_{m} \rho^{m} + m (m + 1) c_{m} \rho^{-m-2} + (m - 2) (m - 1) d_{m} \rho^{-m} \right] \cos m\theta \quad (A. 12a-c)$$

$$\tau_{r\theta} = m \left[(m - 1) a_{m} \rho^{m-2} + (m + 1) b_{m} \rho^{m} - (m + 1) c_{m} \rho^{-m-2} + (-m + 1) d_{m} \rho^{-m} \right] \sin m\theta$$

where

 $\rho \equiv r/r_2 \qquad (A.13)$

From the boundary conditions $\sigma_r = 0$, $\tau_{r\theta} = 0$ at r_1 and $\sigma_r = -p_2 \cos m\theta$, $\tau_{r\theta} = -\tau \sin m\theta$ at r_2 for the sinusoidal solution, the constants a_m , b_m , c_m , and d_m are found to be

$$a_{m} = \left(\frac{-p_{2}}{2} + \frac{\tau}{2}\right) \left[\frac{m^{2} + (1 - m^{2}) k_{2}^{2} - k_{2}^{2m+2}}{\beta_{2} (m - 1)}\right]$$
$$+ \left(\frac{-p_{2}}{2} - \frac{\tau}{2}\right) \frac{k_{2}^{2} (1 - k_{2}^{2m})}{\beta_{2}}$$